
www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 24

www.aitp-edsig.org /www.isedj.org

Steganography and Cryptography
Inspired Enhancement of

Introductory Programming Courses

Yana Kortsarts
ykortsarts@mail.widener.edu

Computer Science Department

Widener University,
Chester, PA, USA

Yulia Kempner

yuliak@hit.ac.il
Computer Science Department

Holon Institute of Technology
Holon, Israel

Abstract

Steganography is the art and science of concealing communication. The goal of steganography is to
hide the very existence of information exchange by embedding messages into unsuspicious digital

media covers. Cryptography, or secret writing, is the study of the methods of encryption, decryption
and their use in communications protocols. Steganography manipulates data to ensure the security of
information, but the concept of steganography differs from cryptography. Cryptography obscures the
meaning of a message, but it does not conceal the fact that there is a message. The goal of
cryptography is to make data unreadable by a third party, whereas the goal of steganography is to

hide the data from a third party. We present a way to integrate steganography and cryptology

examples into introductory programming courses. This enrichment promotes active involvement in the
course and provides opportunity to engage students in experimental problem solving and collaborative
learning to enhance critical thinking.

Keywords: Steganography, cryptology, problem solving, active learning, engagement, introductory
programming.

1. INTRODUCTION

Steganography is the art and science of
concealing communication (Kessler, 2004;
Provos & Honeyman, 2003). The goal of
steganography is to hide the very existence of

information exchange by embedding messages
into unsuspicious digital media covers.
Cryptography, or secret writing, is the study of
the methods of encryption, decryption, and their
use in communications protocols. Both
techniques manipulate data to ensure the
security of information, but the concept of

steganography differs from cryptography.
Cryptography obscures the meaning of a

message, but it does not conceal the fact that
there is a message. The goal of cryptography is
to make data unreadable by a third party,
whereas the goal of steganography is to hide the

data from a third party. Both techniques have an
ancient origin, but the modern field is relatively
young. Cryptography and steganography are
fundamental components of computer security.
Cryptography provides mathematical
foundations of computer security and it is a well-
developed and highly researched field of

mailto:ykortsarts@mail.widener.edu
mailto:yuliak@hit.ac.il

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 25

www.aitp-edsig.org /www.isedj.org

computer science. In contrast, the interest in
steganography has increased only in recent
years, when it was recognized that the use of
steganographic technique might become a
security threat. Furthermore, the first verified
use of steganography for espionage purposes

was recently confirmed by FBI in the case of
Russian spies (Stier, 2010), who used
steganography techniques to hide sensitive
information in images on the internet. This
accusation by the FBI has made steganography
a topic of public interest, and has caused
concern regarding the number of images on the

internet which could potentially hide secret
messages (Zielinska, Mazurczyk & Szczypiorski,

2014). Due to the crucial importance of

cryptography and steganography in computer
science, it seems that at least some examples
should be integrated into the introductory
programming courses - first core courses in the
undergraduate computer science (CS) and
computer information systems (CIS) curriculum.
Furthermore, these concepts provide an

opportunity to enhance analytical and critical
thinking including creativity and ethical analysis
which are fundamental characteristics of the
information systems (IS) profession as stated in
the latest IS 2010 Model Curriculum and
Guidelines for Undergraduate Degree Programs
in Information Systems (Topi, et al., 2010). The

current paper discusses our experience
integrating steganography and cryptography

examples into freshman year programming
courses taught on Python and C.

2. GOALS AND OBJECTIVES

Computer security is long recognized as an
excellent source of the interesting projects that
could be integrated into introductory
programming courses. The merit of
steganography-oriented assignments was
discussed previously by several authors

(Courtney, M. & Stix, A., 2006; Hunt, 2005;
Stevenson, D., Wick, M., & Ratering, S., 2005;
Markham, 2009; Ryder, 2004). Various
approaches to teach cryptography courses for
undergraduates were documented in several

papers (Aly & Akhtart, 2004; Gandhi, Jones, &
Mahoney, 2012; Hsin, 2005; Huraj, L. & Siladi,

V., 2009). In addition, one of the authors of the
current paper had a successful experience
integrating these topics into a computer
forensics course for non-majors (Kortsarts &
Harver, 2007), and both authors had a
successful experience integrating a public-key

cryptography component into a programming
course (Kortsarts & Kempner, 2010). In
contrast, the focus of the current work is on the

integration of cryptography and steganography
concepts into freshman year introductory
programming courses that are taught on Python
and C without use of any image processing and
graphics libraries. We present an idea of
designing the course centered around these

topics and emphasizing the merit of
cryptography and steganography inspired
programming assignments to develop and
enhance programming and critical thinking skills.
The related assignments are integrated into the
courses not as a separate module but through
the entire curriculum, starting at the very first

week of classes from the non-programming
computer ethics component. In this paper, we
focus on the programming part of the courses

and emphasize algorithmic implementations. We
design secure communication teamwork to help
to promote collaborative learning. Our goal is to
link main programming concepts to specific

steganography and cryptography technique to
promote achievement of the programming
proficiency. The proposed enrichment helps to
achieve the following goals: (1) engaging
students in real world problem solving activities;
(2) increasing students’ motivation and interest

in programming; (3) enhancing students’
programming skills. Here we are discussing
some known problems drawn from the advanced
cryptology and computer security textbooks, as
well as less known cryptography techniques,
which are not covered in major texts. We are

making these problems accessible to novice

programmers. Proposed experiments create an
enjoyable programming experience, spark
students’ interest, and increase their
engagement in the course. Students show a
great interest in discovering and decrypting
hidden messages. They become highly
motivated in algorithmic implementation of

various steganography and cryptography
techniques. Some of the coding schemes are
revisited several times during the course, and
students have an opportunity to observe their
growing abilities to tackle more complex
problems and design more elegant

implementations as course is progressing.
Furthermore, the proposed enhancement

provides an opportunity to build a solid
background for upper level technical electives
such as cryptology, computer security and
computer forensics.

3. COURSE CURRICULUM SUMMARY

One of our institutions offers an undergraduate
program leading to Bachelor of Science degrees
in both Computer Information Systems (CIS)
and Computer Science (CS). Both majors take

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 26

www.aitp-edsig.org /www.isedj.org

the two-course series Introduction to Computer
Science 1 (CS 1), taught in Python, and
Introduction to Computer Science 2 (CS 2),
taught in Python and C, in their first year. The
structure of each course is three hours lecture
and three hours lab, four credits. The second

institution requires students to take two
introductory programming courses taught on C
during their freshman year. While we do have
slightly different course structures, the course
curriculum is very similar and allows joint
implementation of the proposed enhancement.

As previously mentioned, the first week of
classes is devoted to the computer ethics
component, which provides an excellent

opportunity to start discussing computer security
topic. This component is not a subject of this
paper, and was previously reported in (Kortsarts
& Fischbach, 2013).

Following computer ethics, we introduce
students to the binary number system. We
discuss binary, octal, and hexadecimal
representations, as well as ASCII code.

The rest of the curriculum is standard for the
introductory programming course. Over two
courses we cover material including two-
dimensional lists and dictionaries in Python, and
up to two-dimensional arrays in C. One of our
institutions has a more extended curriculum and

covers simple data structures, including linked

lists and trees in C.

4. STEGANOGRAPHY ENRICHMENT

The concept of steganography is first introduced
through non-programming assignments as an
effective way to illustrate binary system

representation and add relevance to this topic in
students’ eyes. We discuss the simplest
steganography embedding technique – least
significant bit (LSB) insertion. To avoid
confusion, we provide only limited information
regarding various image representations,

focusing only on a definition of 24-bits RGB (true
color) BMP image format, which is a sequence of

binary bits, three bytes per pixel in BLUE,
GREEN, RED order. Each byte gives the
saturation for that color component. In our
approach, which from our experience worked the
best for our students, the container file is a

string of binary bits and the message to hide is a
string of characters. Students use ASCII code to
convert a string of characters to binary string,
and then replace the last bit of each byte in the
container to hide the information. The reverse
procedure is applied to uncover the message.

For the non-programming assignment, we ask
students to hide very short messages, starting
from one letter, as shown in Figure 1, and
increasing the message to three letter words.

Figure 1: Hiding Letter B

To provide a visual support, we do utilize
UltraEdit 32 to show students the binary
representation of the bitmap images before and
after the hidden message was inserted. We show
students various ways to hide the message,
starting from implementations that alter the
original image. First, the text message is

inserted as one block; then we separate the
message into letters and insert each letter as a
block replacing first byte of original image on
each line. Neither of these techniques provides

the proper hiding of information, and students
can see strange behavior of the original image.
We complete our discussion demonstrating the

results of LSB embedding which works properly
without image distortion, but we do discuss the
limitations of this technique as well, when used
in real world situations.

We revisit steganography LSB technique again

after introducing one-dimensional lists, and this
time students write computational
implementation of this algorithm. One three-
hour laboratory assignment is devoted to write a
program, which hides information and recovers
the hidden information, again, omitting all
details of image representation. Students use

UNIX redirection to input/output from/into file,
but some years we do introduce file input/output
in Python. To combine steganography and
cryptography concepts under one umbrella, one
of the last assignments is devoted to
programming implementation of hiding
encrypted message and decrypting recovered

message. Students design a menu, which allows
choosing from various cryptographic schemes to

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 27

www.aitp-edsig.org /www.isedj.org

encrypt the message, which will be embedded
into the image container.

5. CRYTOGRAPHY ENRICHMENT

We begin our cryptography journey discussing

the process of secure communication scenario
between two parties to introduce main
cryptography terms. Secure communication
between two entities starts with agreement on
specific cryptography scheme or cipher, which is
an algorithm for performing encryption and
decryption. An encryption algorithm modifies the

original message, plaintext, in a way that only
designated receiver is able to read. The output
of the encryption process is called encrypted

message or ciphertext. When designated
receiver would like to read a message, the
ciphertext will be deciphered or decrypted using
decryption algorithm. We also introduce

students to the process of cryptanalysis, which is
used to breach cryptographic security systems
and gain access to the contents of encrypted
messages without permission. There are
additional concepts, such as encryption and
decryption keys, which are more easily

understood while introduced in the context of
the specific cryptographic scheme.

Simple substitution ciphers
The first ciphers introduced to students belong
to the group of simple substitution ciphers. The

main idea behind these ciphers is to substitute

one letter by another using a special substitution
alphabet rule. We focus on two well-known
ciphers belonging to this group: 1) Caesar
cipher, in which alphabet is shifted forward three
letters for encryption, and three letters
backwards for decryption, for example the
plaintext dog produces the ciphertext GRJ; 2)

Shift cipher, a general form of Caesar, where the
alphabet is shifted K letters forward/backwards,
and K is a cipher key (Barr, 2001). For K = 3,
we obtain the Caesar cipher. To encrypt, the
plaintext letter P is modified using the following
formula, C = (P + K) mod 26, and ciphertext

letter C is computed. To decrypt, the similar
procedure is applied and the desired plaintext

letter is computed by the following formula, P =
(C - K) mod 26. For instance, for key K = 14 and
plaintext dog, the ciphertext is RCU.
Assignments related to encryption and
decryption of a single letter using Caesar and

Shift ciphers implementations could be
accomplished almost immediately, since they
require only limited programming material. We
revisit both ciphers after introduction of the
loops. At this point students are capable to
process a string of characters and output the

results of encryption/decryption after each
letter, which is still not a complete
implementation. The full completion of the
computational implementation of both simple
substitution ciphers is done after introducing
students to one-dimensional lists/arrays and

explaining file input/output using programming
language or input/output UNIX redirection
operators. At this stage, in addition to
implementing encryption/decryption algorithms,
students are also introduced to the notion of
cryptanalysis, specifically, brute force attack and
proposed to write a computational

implementation of this attack for shift cipher.
The brute force approach in this case requires
application of all possible shift keys, from 0 to

25, on the ciphertext to find an actual encryption
key and the desired plaintext. We ask students
to design a simplified interactive
implementation, without utilization of the built-in

dictionaries. The program finds and displays the
decrypted message for each possible key.
Students implement sentinel-controlled
repetition based on the validity of the displayed
message. The program terminates when the
valid English sentence is revealed on the screen,

which is a desired plaintext. To complete the
process, the program also outputs the actual
shift key.

Our goal is to apply these assignments to
develop and practice programming skills. We

explain this material on specific examples,
omitting theoretical details and providing final

formulas as known fact without mathematical
proofs. Implementation of simple substitution
ciphers provides an excellent opportunity to
practice decision and loop programming
structures, and simple processing of the one-
dimensional lists/arrays. Since all calculations
are performed on numeric values assigned to
characters using the rule a/A 0, b/B 1,…,

z/Z 25, these examples require working with

various data types - characters and integers -

switching among them while moving from input
to calculations and then to output, which is a
struggle for novice programmers. Python
provides more flexibility than C, but still requires

explicit conversion to avoid any logic errors.
While these ciphers are well suited for starting,
one should note that they only require modifying

the content of the array/list values, leaving the
structure of the array/list unchanged. The next
example requires array/list manipulations of a
higher complexity.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 28

www.aitp-edsig.org /www.isedj.org

Dynamic substitution cipher – Chaocipher
Recently, we also integrated into the course
curriculum, a less known and more complex
cipher, chaocipher, (Byrne, 1918; Rubin, 2010),
belonging to the group of dynamic substitution
ciphers. In these ciphers, the substitution rule is

changed after each character is encrypted. To
decrypt, the reverse procedure is applied. The
chaocipher was originally invented by John F.
Byrne in 1918, who claimed that the cipher is
unbreakable. Unfortunately, the cipher didn’t
receive any recognition from US officials.
Frustrated by the lack of interest, Byrne

published four plaintext-ciphertext challenges in
his autobiography, Silent Years in 1953 (Byrne,
1953). The cipher details were kept secret for

many years. Things changed in 2010 when the
National Cryptologic Museum library received
archives from the members of the Byrne family
with the explanation of the chaocipher

algorithm, and there are direct links to many
items of interest donated by Byrne family posted
on the museum website
(http://www.nsa.gov/about/cryptologic_heritage
/museum/index.shtml). In our approach we
closely follow the description of the algorithm

published in July 2010 by Moshe Rubin (2010),
providing further adaptation and clarifications for
novice programmers. The chaocipher method
uses two alphabets that are connected to each
other. The encryption/decryption algorithm
essentially consists of three parts,

encryption/decryption of the letter, permutation

of the left alphabet using specific rules, and
permutation of the right alphabet using specific
rules. These steps are performed continuously
until the input (plaintext or ciphertext) is
exhausted. This cipher requires swapping
array/list elements, shifting blocks of the
elements several positions left and right, and

shifting all elements cyclically until certain
conditions are satisfied. These operations are
more complex compared to the processing done
for the simple substitution ciphers, and require a
higher level of algorithmic thinking. To ease the
transition and increase the difficulty level

gradually, we first permit students to use
additional array/list storage, increasing the

space complexity of the algorithm. As a
complete implementation, students are required
to implement all these array/list manipulations
with minimal additional space usage. To avoid
any attempts at plagiarism, we provide only

cipher description and all necessary details to
design a computational implementation. We
emphasize the mystery around this cipher to
keep students motivated and excited. We reveal
the name and history of the cipher only after
students complete writing the program, but

before the collaborative testing step of the
assignment. The mystery around this cipher and
the interesting history attract students’
attention. This cipher provides an opportunity to
practice complex manipulations of one-
dimensional arrays and lists data structures,

utilizing a wide range of built-in Python lists
methods and functions, and writing custom
functions in C. From the best of our knowledge,
this cipher is not covered in any cryptography
textbooks.

Block ciphers, Hill cipher

While there are plenty of ciphers with witch to
practice one-dimensional lists/arrays data
structures, the options are limited when it comes

to two-dimensional lists/arrays. The assignment
based on Hill cipher provides an efficient way to
integrate programming and cryptography topics.
This cipher belongs to the group of block

ciphers, in which the encryption and decryption
process is applied to a block of characters rather
than to single character. Hill cipher was invented
by Lester S. Hill in 1929 (Hill, 1929; Barr, 2001).
The key for this cipher is a square matrix of
integers of size n, satisfying several special

conditions: 1) all elements of the matrix are
numbers between 0 and 25, since the size of the
English alphabet is 26; 2) the determinant of the
key matrix must be relatively prime to 26. For
the encryption process, the plaintext is divided
into a block of n letters and for each block of n

letters; multiplication of the key matrix by

vector is applied to obtain the block of n
ciphertext letters. The process is repeated for all
blocks. To decrypt, the same multiplication
procedure is applied to the block of n ciphertext
letters, but instead, substituting the original key
matrix with its modular inverse.

We start this programming assignment with the
matrix key of size 2, processing the blocks of
size 2, gradually increasing the size of the
matrix and the correspondent size of the blocks.
For instance, we would like to encrypt the
following word, code, using Hill cipher and the

matrix key

65

32

2221

1211

aa

aa
A

To encrypt, the plaintext code is divided into
two blocks.

e

d

o

c

http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml
http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 29

www.aitp-edsig.org /www.isedj.org

After replacing the characters by their numeric
values using the rule mentioned earlier, c 2, o

 14, d 3, e 4 , each block is encrypted in

the following manner:

N

S
A

Q

U
A

13

18
)26(mod

4

3

65

32

4

3

16

20
)26(mod

14

2

65

32

14

2

The resulting ciphertext is UQSN. To decrypt,

the similar process is applied on the ciphertext,

substituting key matrix A with its modular
inverse. The general formula for inverse matrix
2x2 reads as follows:

)26(mod))(det(
1121

122211

aa

aa
AA

In our case, we perform the following
calculations, to obtain the modular inverse of the
key matrix:

)26(mod
10

01

819

124

)26(mod
25

36
17

)26(mod
25

36
)23(

)26(mod
25

36
))(det(

1

1

1

11

11

IAA

A

A

A

AA

To decrypt and find a desired plaintext, the
ciphertext is divided into blocks of two letters

and each block is multiplied by the modular
inverse of matrix key A.

e

d

o

c

4

3
)26(mod

13

18

819

124

14

2
)26(mod

16

20

819

124

Note, that all calculations are performed modulo
26. As in previous examples, we provide
students with all of the necessary mathematical

background. For this assignment, there is a
substantial increase in complexity of
mathematics, and consequently the level of the
programming required, while progressing from

smallest matrix size to the higher sizes. The
maximal size of the matrix key and the block of
letters in our lab assignment is four.

Two dimensional lists/arrays is not an easy topic
to comprehend. To ease computational
implementation, students are provided with a
detailed top-down design, and structured
guidance for each function. To implement the

Hill cipher encryption and decryption algorithms,
students compute the matrix determinant, check
validity of the matrix key to ensure that the
matrix is invertible modulo 26, and then
compute the key matrix modular inverse, which
differs slightly from a regular matrix inverse,
with multiplicative inverse of determinant

modulo 26 substituting for a regular inverse of
the determinant. In addition, students
implement the matrix by vector multiplication.
After all preparation steps are complete,
students are ready to process the
plaintext/ciphertext in blocks of 2, 3, or 4
letters, based on the size of the key matrix, to

produce a final result.

Hill cipher provides an excellent opportunity for
students to become proficient in basic
processing of two-dimensional lists/arrays data
structures.

6. TEAM COLLABORATION

We incorporate two team work routines. For
some assignments, students work in teams for
the entire laboratory session. We pair weaker
students with stronger students to promote

active learning. Students work together on
programming implementation as well as testing
and submit a joint lab report. While this
approach has certain advantages, such as
exchange of knowledge and the possibility to
improve for weaker students and to further
improve through teaching for stronger students,

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 30

www.aitp-edsig.org /www.isedj.org

we found that in order to be able to perform on
the required level, students must work
independently during most laboratory sessions.
Since the level of prior programming experience
varies substantially from student to student, in
recent years we avoid team work during the

programming step of the assignment to make
sure students are not taking advantages of their
peers. We mostly apply the second collaborative
learning approach in which students work in
teams only to test their programs and to write a
lab report. The testing process begins with
secure communication session. Students

exchange encrypted messages between team
members and then decrypt messages using their
own program. Successful decryption indicates a

first step toward fully accomplished assignment.
We found that the collaborative work during the
testing and revision step of the assignment
enhances students’ understanding and creates

an engaging environment. We ask students to
submit their program twice, before, as well as
after the testing and revision step. This allows
proper grading and ability to track students’
error corrections in order to gather information
about the most common mistakes and address

these issues before the next assignment.

7. SUMMARY

This paper presents our experience teaching an
introductory programming course sequence

using a computer security theme. Students

practiced the main programming concepts on
assignments inspired by steganography and
cryptography. To assess the students’
experience, we applied an indirect assessment
tool and designed a short post-survey that
included several open-ended questions eliciting
and asked student feedback. Students

commented on the level of their engagement,
interest, curiosity, and active learning
opportunities during the laboratory assignments
related to computer security topics. We also
asked students to comment on the effectiveness
of these assignments to enhance programming

skills compared to the various assignments
related to other topics we to during the course.

Overall, students provided positive feedback,
especially emphasizing the impact of the team
collaboration during the testing step. Students
commented that the requirement to find logical
errors in their peers’ programs significantly

promoted comprehension of the main
programming concepts. They also commented
on their excitement of finding proper testing
inputs to discover tricky logical bugs. Based on
the students’ post-survey results, informal
discussions, and comments from teaching

evaluations, we could state that the proposed
enhancement of the introductory programming
courses was a successful addition to our
previous positive experience with enrichment of
the freshman programming course (Kortsarts &
Kempner 2012). Current enrichment expands

the pool of interesting and engaging
assignments for this course, and we are
planning to continue to work in this direction in
the future. Some of the ciphers described above
allow variations and modifications, and taking in
account the mathematical background of the
students, additional examples, such as Affine

cipher and polyalphabetic substitution Vigenere
(Barr, 2001) cipher could be a great addition to
the already proposed set of ciphers. In addition,

we propose to combine several ciphers and
encrypt messages in a two-step process and
then to apply a simplified cryptanalysis approach
to decipher the message. We believe in changing

course laboratory assignments often, and
computer security based assignments provide
further opportunities for successful course
implementations.

8. FURTHER OPPORTUNITIES

We built our current project upon successful
implementations of the single components over
several years. Merkle-Hellman knapsack
cryptosystem (Merkle & Hellman, 1978) was the
first algorithm we introduced in the introductory

programming courses sequence. We introduced

additive knapsack, expanded to multiplicative
knapsack, and finally discussed various
cryptanalysis techniques. Programming
assignments focused on encryption and
decryption computational implementations, and
on a dynamic programming algorithm to
accomplish cryptanalysis attack. The detailed

description of this project component was
published in 2010 (Kortsarts & Kempner, 2010).
In recent years we found that it is more efficient
to cover this material in sophomore algorithms
course, and focus on symmetric key
cryptography schemes described above in the

freshman introductory programming courses. In
sophomore algorithms course students are

better prepared to comprehend conceptually
more difficult group of ciphers such as public key
or asymmetric ciphers. Some examples of the
ciphers that work well are RSA (Rivest, Shamir,
& Adleman, 1978) and flipping coins over the

phone, which uses a similar protocol, introduced
by Blum in 1983 (Blum, 1983; Trappe &
Washington, 2006), and it is based on the Rabin
cryptosystem (1979). While students are
capable of completing computational
implementation of these ciphers and games in

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 31

www.aitp-edsig.org /www.isedj.org

the freshman programming courses,
conceptually, these algorithms require a higher
level of maturity and appropriate mathematical
background for successful integration into the
course curriculum. By the end of the sophomore
year, most students complete a discrete

mathematics two-course sequence, ensuring
their abilities to comprehend these less intuitive
cryptography schemes. While these ciphers
provide fewer benefits to accomplish our goals in
freshman programming courses compared to
symmetric ciphers described above, they are an
excellent enhancement for the sophomore

courses.

 9. REFERENCES

Aly, A. & Akhtar, S. (2004), Cryptography and

security protocols course for undergraduate
IT students, Newsletter, ACM SIGCSE
Bulletin, 36(2), 44-47

Barr, T. (2001), Invitation to Cryptology,

Pearson

Blum, M. (1983), Coin flipping by telephone a

protocol for solving impossible problems,

Newsletter, ACM SIGACT News – A special
Issue on cryptography, 15(1), 23, - 27

Byrne, J. (1953), Silent Years, An Autobiography

with Memoirs of James Joyce and Our

Ireland. New York: Farrar, Straus, and
Young (Reprinted in 1975 by Octagon Books,

a division of Farrar, Straus, and Giroux)

Courtney, M. & Stix, A. (2006), Building a

Steganography Program Including How to
Load, Process, and Save JPEG and PNG Files
in Java, Mathematics and Computer
Education, 40(1), 19-35

Gandhi, R., Jones, C., & Mahoney, W. (2012), A

freshman level course on information
assurance: can it be done? Here is how. ACM
Inroads, 3(3), 50-61

Hsin, W. (2005), Teaching cryptography to

undergraduate students in small liberal art
schools, InfoSecCD '05: Proceedings of the
2nd annual conference on Information
security curriculum development, 38-42

Hunt, K. (2005), A Java framework for

experimentation with steganography,
SIGCSE '05 Proceedings of the 36th SIGCSE
technical symposium on Computer science
education, 282-286

Huraj, L. & Siladi, V. (2009), Cryptography as
aparadigm proposal for building the

computer science knowledge, ICCOMP'09:
Proceedings of the WSEAES 13th
international conference on Computers, 357-
361

Kessler, G. (2004), Overview of Steganography
for the computer forensics examiner,
Forensics Science Communication, 6(3)

Kortsarts, Y & Harver. W., (2007), Introduction

to Computer Forensics for Non-Majors, The
Proceedings of ISECON 2007: #3142, ISSN:

1542-7382

Kortsarts, Y. & Kempner, Y., (2010), Merkle-
Hellman Knapsack Cryptosystem in
Undergraduate Computer Science
Curriculum, Proceedings of the 2010
International Conference on Frontiers in

Education: Computer Science & Computer
Engineering, FECS 2010, CSREA Press 2010,
ISBN 1-60132-143-0

Kortsarts, Y. & Kempner, Y., (2012), Enriching

Introductory Programming Courses with

Non-Intuitive Probability Experiments

Component, ITiCSE '12: Proceedings of

the 17th ACM annual conference on
Innovation and technology in computer
science education, 128-131

Kortsarts, Y. & Fischbach, J., (2013),

Incorporating Professional Ethics into an

Introductory Computer Science Course,
Journal for Computing Science in Colleges,
29(3), 35-42

Markham, S, (2009), Expanding security

awareness in introductory computer science
courses, InfoSecCD '09: 2009 Information

Security Curriculum Development
Conference, 27 - 31

Merkle, R. & Hellman, M. (1978). Hiding

information and signatures in trapdoor

knapsacks. Information Theory, IEEE

Transactions on Information Theory, 24 (5),
525–530

National Cryptologic Museum website,

http://www.nsa.gov/about/cryptologic_herit
age/museum/index.shtml

Provos, N. & Honeyman, P. (2003). Hide and
seek: An Introduction to Steganography,
IEEE Security and Privacy Magazine

http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml
http://www.nsa.gov/about/cryptologic_heritage/museum/index.shtml

www.manaraa.com

Information Systems Education Journal (ISEDJ) 13(4)
ISSN: 1545-679X July 2015

©2015 EDSIG (Education Special Interest Group of the AITP) Page 32

www.aitp-edsig.org /www.isedj.org

Rivest, R., Shamir, A., & Adleman, L. (1978), A

Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications
of the ACM, 21 (2), 120–126.

Rabin, M. (1979), Digitalized Signatures and
Public-Key Functions as Intractable as
Factorization, Technical Report, MIT
Laboratory for Computer Science

Rubin, M. (2010), Chaocipher revealed: the

algorithm, Progress report #17 from

http://www.mountainvistasoft.com/chaociph
er/

Ryder, J (2004), Steganography may increase
learning everywhere. Journal of Computing
Sciences in Colleges, 19(5), 154-162

Stevenson, D., Wick, M., & Ratering, S. (2005),
Steganography and cartography: interesting
assignments that reinforce machine
representation, bit manipulation, and
discrete structure concepts, SIGCSE '05
Proceedings of the 36th SIGCSE technical

symposium on Computer science education,
277-281

Stier, C. (2010), Russian spy ring hid secret

messages on the Web, from
http://www.newscientist.com/

article/dn19126-russian-spy-ring-hid-
secret-messageson-the-web.html.

Topi, H., Valacich, J., Wright, R., Kaiser, K.

Nunamaker, J., Sipior, J., & Vreede, G.
(2010), IS 2010 Model Curriculum and
Guidelines for Undergraduate Degree

Programs in Information Systems,
Communications of the Association of
Information Systems, 26.

Trappe, W. & Washington, L. (2006),

Introduction to cryptography with Coding
Theory, Second Edition, Pearson Prentice

Hall

Zielinska, E., Mazurczyk, W., & Szczypiorski, K.,

2014). Trends in Steganography,
Communications of the ACM, 57(3), 86-9

http://www.mountainvistasoft.com/chaocipher/
http://www.mountainvistasoft.com/chaocipher/

